skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sistla, A Prasad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 13, 2026
  2. Free, publicly-accessible full text available October 13, 2026
  3. We consider the problem of checking the differential privacy of online randomized algorithms that process a stream of inputs and produce outputs corresponding to each input. This paper generalizes an automaton model called DiP automata [10] to describe such algorithms by allowing multiple real-valued storage variables. A DiP automaton is a parametric automaton whose behavior depends on the privacy budget ∈. An automaton A will be said to be differentially private if, for some D, the automaton is D∈-differentially private for all values of ∈ > 0. We identify a precise characterization of the class of all differentially private DiP automata. We show that the problem of determining if a given DiP automaton belongs to this class is PSPACE-complete. Our PSPACE algorithm also computes a value for D when the given automaton is differentially private. The algorithm has been implemented, and experiments demonstrating its effectiveness are presented. 
    more » « less
  4. null (Ed.)
  5. Model checking systems formalized using probabilistic models such as discrete time Markov chains (DTMCs) and Markov decision processes (MDPs) can be reduced to computing constrained reachability properties. Linear programming methods to compute reachability probabilities for DTMCs and MDPs do not scale to large models. Thus, model checking tools often employ iterative methods to approximate reachability probabilities. These approximations can be far from the actual probabilities, leading to inaccurate model checking results. On the other hand, specialized techniques employed in existing state-of-the-art exact quantitative model checkers, don’t scale as well as their iterative counterparts. In this work, we present a new model checking algorithm that improves the approximate results obtained by scalable iterative techniques to compute exact reachability probabilities. Our techniques are implemented as an extension of the PRISM model checker and are evaluated against other exact quantitative model checking engines. 
    more » « less
  6. Differential privacy is a de facto standard for statistical computations over databases that contain private data. Its main and rather surprising strength is to guarantee individual privacy and yet allow for accurate statistical results. Thanks to its mathematical definition, differential privacy is also a natural target for formal analysis. A broad line of work develops and uses logical methods for proving privacy. A more recent and complementary line of work uses statistical methods for finding privacy violations. Although both lines of work are practically successful, they elide the fundamental question of decidability. This paper studies the decidability of differential privacy. We first establish that checking differential privacy is undecidable even if one restricts to programs having a single Boolean input and a single Boolean output. Then, we define a non-trivial class of programs and provide a decision procedure for checking the differential privacy of a program in this class. Our procedure takes as input a program P parametrized by a privacy budget ϵ and either establishes the differential privacy for all possible values of ϵ or generates a counter-example. In addition, our procedure works for both to ϵ-differential privacy and (ϵ, δ)-differential privacy. Technically, the decision procedure is based on a novel and judicious encoding of the semantics of programs in our class into a decidable fragment of the first-order theory of the reals with exponentiation. We implement our procedure and use it for (dis)proving privacy bounds for many well-known examples, including randomized response, histogram, report noisy max and sparse vector. 
    more » « less